Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.221
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhen Jiu ; 44(4): 449-454, 2024 Apr 12.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38621733

RESUMEN

OBJECTIVES: To observe the effects of moxibustion on intestinal barrier function and Toll-like receptor 4 (TLR4)/nuclear factor-κB p65 (NF-κB p65) signaling pathway in obese rats and explore the mechanism of moxibustion in the intervention of obesity. METHODS: Fifty-five Wistar rats of SPF grade were randomly divided into a normal group (10 rats) and a modeling group (45 rats). In the modeling group, the obesity model was established by feeding high-fat diet. Thirty successfully-modeled rats were randomized into a model group, a moxibustion group, and a placebo-control group, with 10 rats in each one. In the moxibustion group, moxibustion was applied at the site 3 cm to 5 cm far from the surface of "Zhongwan" (CV 12), with the temperature maintained at (46±1 ) ℃. In the placebo-control group, moxibustion was applied at the site 8 cm to 10 cm far from "Zhongwan" (CV 12), with the temperature maintained at (38±1) ℃. The intervention was delivered once daily for 8 weeks in the above two groups. The body mass and food intake of the rats were observed before and after intervention in each group. Using ELISA methool, the levels of serum triacylglycerol (TG), total cholesterol (TC) and lipopolysaccharide (LPS) were detected and the insulin resistance index (HOMA-IR) was calculated. HE staining was used to observe the morphology of colon tissue. The mRNA expression of zonula occludens-1 (ZO-1), Occludin, Claudin-1, TLR4 and NF-κB p65 in the colon tissue was detected by quantitative real-time PCR; and the protein expression of ZO-1, Occludin, Claudin-1, TLR4 and NF-κB p65 was detected by Western blot in the rats of each group. RESULTS: Compared with the normal group, the body mass, food intake, the level of HOMA-IR, and the serum levels of TC, TG and LPS were increased in the rats of the model group (P<0.01); those indexes in the moxibustion group were all reduced when compared with the model group and the placebo-control group respectively (P<0.01, P<0.05). Compared with the normal group, a large number of epithelial cells in the mucosa of colon tissue was damaged, shed, and the inflammatory cells were infiltrated obviously in the interstitium in the rats of the model group. When compared with the model group, in the moxibustion group, the damage of the colon tissue was recovered to various degrees and there were few infiltrated inflammatory cells in the interstitium, while, the epithelial injury of the colon tissue was slightly recovered and the infiltrated inflammatory cells in the interstitium were still seen in the placebo-control group. The mRNA and protein expressions of ZO-1, Occludin and Caudin-1 were decreased in the model group compared with those in the normal group (P<0.01). When compared with the model group and the placebo-control group, the mRNA and protein expressions of these indexes were increased in the moxibustion group (P<0.01, P<0.05). In the model group, the mRNA and protein expressions of TLR4 and NF-κB p65 were increased when compared with those in the normal group (P<0.01), and the mRNA and protein expressions of these indexes were reduced in the moxibustion group when compared with those in the model group and the placebo-control group (P<0.01). CONCLUSIONS: Moxibustion can reduce the body mass and food intake, regulate the blood lipid and improve insulin resistance in the rats of obesity. It may be related to alleviating inflammatory response through improving intestinal barrier function and modulating the intestinal TLR4/NF-κB p65 signaling pathway.


Asunto(s)
Resistencia a la Insulina , Moxibustión , Ratas , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Ratas Wistar , Receptor Toll-Like 4/genética , Lipopolisacáridos/metabolismo , Funcion de la Barrera Intestinal , Ocludina/metabolismo , Claudina-1/metabolismo , Transducción de Señal , Obesidad/genética , Obesidad/terapia , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
Open Vet J ; 14(1): 428-437, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633156

RESUMEN

Background: Obesity is one of the most prevalent and perilous health affairs. Male obesity-associated secondary hypogonadism (MOSH) is one of many of its complexities, which is mounting in parallel with the aggravation of obesity. Magnetic nanoparticles seem to be an advanced favorable trend in multiple biomedical fields. Aim: In this study, we explore the therapeutic effects of superparamagnetic iron oxide nanoparticles (SPIONs) coated with carboxymethyl cellulose (CMC) on an obese male rat model with MOSH syndrome, comparing their impacts with a well-known anti-obesity medication (Orlistat). Methods: 42 male albino rats split into 7 equal groups: 1-negative control: nonobese, untreated; 35 rats fed the high fat-high fructose (HFHF) diet for a period of 12 weeks. Obese rats splitted into 6 equal groups; 2-positive control: obese untreated; 3-obese given Orlistat (30 mg/kg); 4-obese given CMC-SPIONs (25 mgFe/kg); 5-obese given CMC-SPIONs (50 mgFe/kg); 6-obese given CMC-SPIONs(25 mgFe/kg) + Orlistat (30 mg/kg), 7-obese given CMC-SPIONs (50 mgFe/kg) + Orlistat (30 mg/kg); all treatments given orally for 4 weeks. During sacrifice, blood serum and sectioned hypothalamic, pituitary, testicular, and adipose tissues were collected for biochemical and biomolecular assessments. Results: The HFHF diet for 12 weeks resulted in a significant upsurge in body weight, body mass index, serum fasting glucose, insulin resistance, TAG, total cholesterol, and LDL-c; HDL-c was dropped. Serum FSH, LH, and testosterone values declined. A significant disorder in expression levels of genes regulating the hypothalamic-pituitary-testicular-axis pathway. Hypothalamic GnRH, Kisspeptin-1, Kisspeptin-r1, and Adipo-R1 values declined. GnIH and Leptin-R1 values raised up. Pituitary GnRH-R values declined. Testicular tissue STAR, HSD17B3, and CYP19A1 values declined. Adipose tissue adiponectin declined, while leptin raised up. CMC-SPIONs 25-50 mg could modulate the deranged biochemical parameters and correct the deranged expression levels of all previous genes. Co-treatments revealed highly synergistic effects on all parameters. Overall, CMC-SPIONs have significant efficiency whether alone or with Orlisat in limiting obesity and consequence subfertility. Conclusion: CMC-SPIONs act as an incoming promising contender for obesity and MOSH disorders management, and need more studies on their mechanisms.


Asunto(s)
Hipogonadismo , Obesidad , Enfermedades de los Roedores , Ratas , Masculino , Animales , Leptina/metabolismo , Leptina/uso terapéutico , Orlistat/metabolismo , Orlistat/farmacología , Orlistat/uso terapéutico , Testículo/metabolismo , Obesidad/genética , Obesidad/metabolismo , Obesidad/veterinaria , Hipogonadismo/metabolismo , Hipogonadismo/veterinaria , Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/uso terapéutico , Nanopartículas Magnéticas de Óxido de Hierro
3.
Diabetes Obes Metab ; 26 Suppl 2: 34-45, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38450938

RESUMEN

Hypothalamic obesity (HO) is a rare and complex disorder that confers substantial morbidity and excess mortality. HO is a unique subtype of obesity characterized by impairment in the key brain pathways that regulate energy intake and expenditure, autonomic nervous system function, and peripheral hormonal signalling. HO often occurs in the context of hypothalamic syndrome, a constellation of symptoms that follow from disruption of hypothalamic functions, for example, temperature regulation, sleep-wake circadian control, and energy balance. Genetic forms of HO, including the monogenic obesity syndromes, often impact central leptin-melanocortin pathways. Acquired forms of HO occur as a result of tumours impacting the hypothalamus, such as craniopharyngioma, surgery or radiation to treat those tumours, or other forms of hypothalamic damage, such as brain injury impacting the region. Risk for severe obesity following hypothalamic injury is increased with larger extent of hypothalamic damage or lesions that contain the medial and posterior hypothalamic nuclei that support melanocortin signalling pathways. Structural damage in these hypothalamic nuclei often leads to hyperphagia, central insulin and leptin resistance, decreased sympathetic activity, low energy expenditure, and increased energy storage in adipose tissue, the collective effect of which is rapid weight gain. Individuals with hyperphagia are perpetually hungry. They do not experience fullness at the end of a meal, nor do they feel satiated after meals, leading them to consume larger and more frequent meals. To date, most efforts to treat HO have been disappointing and met with limited, if any, long-term success. However, new treatments based on the distinct pathophysiology of disturbed energy homeostasis in acquired HO may hold promise for the future.


Asunto(s)
Craneofaringioma , Enfermedades Hipotalámicas , Neoplasias Hipofisarias , Humanos , Leptina/metabolismo , Enfermedades Hipotalámicas/complicaciones , Enfermedades Hipotalámicas/terapia , Enfermedades Hipotalámicas/metabolismo , Obesidad/complicaciones , Obesidad/terapia , Obesidad/genética , Hipotálamo/metabolismo , Craneofaringioma/complicaciones , Craneofaringioma/terapia , Craneofaringioma/metabolismo , Hiperfagia , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Melanocortinas/metabolismo , Metabolismo Energético/fisiología
4.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542331

RESUMEN

Colorectal cancer (CRC) is a major life-threatening disease, being the third most common cancer and a leading cause of death worldwide. Enhanced adiposity, particularly visceral fat, is a major risk factor for CRC, and obesity-associated alterations in metabolic, inflammatory and immune profiles in visceral adipose tissue (VAT) strongly contribute to promoting or sustaining intestinal carcinogenesis. The role of diet and nutrition in obesity and CRC has been extensively demonstrated, and AT represents the main place where diet-induced signals are integrated. Among the factors introduced with diet and processed or enriched in AT, ω3/ω6 polyunsaturated fatty acids (PUFAs) are endowed with pro- or anti-inflammatory properties and have been shown to exert either promoting or protective roles in CRC. In this study, we investigated the impact of ex vivo exposure to the ω3 and ω6 PUFAs docosahexaenoic and arachidonic acids on VAT adipocyte whole transcription in healthy lean, obese and CRC-affected individuals. High-throughput sequencing of protein-coding and long non-coding RNAs allowed us to identify specific pathways and regulatory circuits controlled by PUFAs and highlighted an impaired responsiveness of obese and CRC-affected individuals as compared to the strong response observed in healthy lean subjects. This further supports the role of healthy diets and balanced ω3/ω6 PUFA intake in the primary prevention of obesity and cancer.


Asunto(s)
Neoplasias Colorrectales , Ácidos Grasos Omega-3 , ARN Largo no Codificante , Humanos , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados , Adipocitos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Neoplasias Colorrectales/genética
5.
J Agric Food Chem ; 72(13): 7230-7243, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38494694

RESUMEN

Long-term high-fat diet (HFD) will induce dysbiosis and a disturbance of intestinal homeostasis. Large yellow tea polysaccharide (LYP) has been shown to improve obesity-associated metabolic disease via modulation of the M2 polarization. However, the contribution of LYP to intestinal barrier impairment and improvement mechanisms in obesity caused by an HFD are still not clear. In this study, we evaluated the impacts of LYP on the mucosal barrier function and microbiota composition in HFD-feeding mice. Results exhibited that dietary LYP supplement could ameliorate the physical barrier function via maintaining intestinal mucosal integrity and elevating tight-junction protein production, strengthen the chemical barrier function via up-regulating the levels of glucagon-like peptide-1 and increasing mucin-producing goblet cell numbers, and enhance the intestinal immune barrier function though suppressing immune cell subsets and cytokines toward pro-inflammatory phenotypes. Moreover, LYP reshaped the constitution and metabolism of intestinal flora by enriching probiotics that produce short-chain fatty acids. Overall, LYP might be used as a critical regulator of intestinal homeostasis to improve host health by promoting gut barrier integrity, modulating intestinal immune response, and inhibiting bowel inflammation.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Dieta Alta en Grasa/efectos adversos , Disbiosis/tratamiento farmacológico , Obesidad/etiología , Obesidad/genética , Polisacáridos/farmacología , Homeostasis , , Ratones Endogámicos C57BL
6.
Nutrients ; 16(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38398881

RESUMEN

This study aimed to determine the impact of a fiber supplement on body weight and composition in individuals with obesity with specific genetic polymorphisms. It involved 112 adults with obesity, each with at least one minor allele in the FTO, LEP, LEPR, or MC4R polymorphism. Participants were randomized to receive either a fiber supplement (glucomannan, inulin, and psyllium) or a placebo for 180 days. The experimental group showed significant reductions in body weight (treatment difference: -4.9%; 95% CI: -6.9% to -2.9%; p < 0.01) and BMI (treatment difference: -1.4 kg/m2; 95% CI: -1.7 to -1.2; p < 0.01) compared to placebo. Further significant decreases in fat mass (treatment difference: -13.0%; 95% CI: -14.4 to -11.7; p < 0.01) and visceral fat rating (treatment difference: -1.3; 95% CI: -1.6 to -1.0; p < 0.01) were noted. Homozygous minor allele carriers experienced greater decreases in body weight (treatment difference: -3.2%; 95% CI: -4.9% to -1.6%; p < 0.01) and BMI (treatment difference: -1.2 kg/m2; 95% CI: -2.0 to -0.4; p < 0.01) compared to heterozygous allele carriers. These carriers also had a more significant reduction in fat mass (treatment difference: -9.8%; 95% CI: -10.6 to -9.1; p < 0.01) and visceral fat rating (treatment difference: -0.9; 95% CI: -1.3 to -0.5; p < 0.01). A high incidence of gastrointestinal events was reported in the experimental group (74.6%), unlike the placebo group, which reported no side effects. Dietary supplementation with glucomannan, inulin, and psyllium effectively promotes weight loss and improves body composition in individuals with obesity, particularly those with specific genetic polymorphisms.


Asunto(s)
Inulina , Mananos , Psyllium , Adulto , Humanos , Psyllium/uso terapéutico , Polimorfismo de Nucleótido Simple , Obesidad/tratamiento farmacológico , Obesidad/genética , Obesidad/epidemiología , Peso Corporal/genética , Pérdida de Peso/genética , Suplementos Dietéticos , Índice de Masa Corporal , Receptor de Melanocortina Tipo 4/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
7.
J Neurosci ; 44(14)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38395612

RESUMEN

ß-Catenin is a bifunctional molecule that is an effector of the wingless-related integration site (Wnt) signaling to control gene expression and contributes to the regulation of cytoskeleton and neurotransmitter vesicle trafficking. In its former role, ß-catenin binds transcription factor 7-like 2 (TCF7L2), which shows strong genetic associations with the pathogenesis of obesity and type-2 diabetes. Here, we sought to determine whether ß-catenin plays a role in the neuroendocrine regulation of body weight and glucose homeostasis. Bilateral injections of adeno-associated virus type-2 (AAV2)-mCherry-Cre were placed into the arcuate nucleus of adult male and female ß-catenin flox mice, to specifically delete ß-catenin expression in the mediobasal hypothalamus (MBH-ß-cat KO). Metabolic parameters were then monitored under conditions of low-fat (LFD) and high-fat diet (HFD). On LFD, MBH-ß-cat KO mice showed minimal metabolic disturbances, but on HFD, despite having only a small difference in weekly caloric intake, the MBH-ß-cat KO mice were significantly heavier than the control mice in both sexes (p < 0.05). This deficit seemed to be due to a failure to show an adaptive increase in energy expenditure seen in controls, which served to offset the increased calories by HFD. Both male and female MBH-ß-cat KO mice were highly glucose intolerant when on HFD and displayed a significant reduction in both leptin and insulin sensitivity compared with controls. This study highlights a critical role for ß-catenin in the hypothalamic circuits regulating body weight and glucose homeostasis and reveals potential mechanisms by which genetic variation in this pathway could impact on development of metabolic disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa , Animales , Femenino , Masculino , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Peso Corporal/genética , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/genética , Glucosa/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo
8.
Nat Commun ; 15(1): 1030, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310104

RESUMEN

Secretin, though originally discovered as a gut-derived hormone, is recently found to be abundantly expressed in the ventromedial hypothalamus, from which the central neural system controls satiety, energy metabolism, and bone homeostasis. However, the functional significance of secretin in the ventromedial hypothalamus remains unclear. Here we show that the loss of ventromedial hypothalamus-derived secretin leads to osteopenia in male and female mice, which is primarily induced by diminished cAMP response element-binding protein phosphorylation and upregulation in peripheral sympathetic activity. Moreover, the ventromedial hypothalamus-secretin inhibition also contributes to hyperphagia, dysregulated lipogenesis, and impaired thermogenesis, resulting in obesity in male and female mice. Conversely, overexpression of secretin in the ventromedial hypothalamus promotes bone mass accrual in mice of both sexes. Collectively, our findings identify an unappreciated secretin signaling in the central neural system for the regulation of energy and bone metabolism, which may serve as a new target for the clinical management of obesity and osteoporosis.


Asunto(s)
Hipotálamo , Secretina , Ratones , Masculino , Femenino , Animales , Secretina/metabolismo , Hipotálamo/metabolismo , Obesidad/genética , Obesidad/metabolismo , Homeostasis/fisiología , Metabolismo Energético
9.
J Trace Elem Med Biol ; 83: 127376, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38183920

RESUMEN

INTRODUCTION: The increasing prevalence of obesity has become a major health problem worldwide. The causes of obesity are multifactorial and could be influenced by dietary patterns and genetic factors. Obesity has been associated with a decrease in micronutrient intake and consequently decreased blood concentrations. Selenium is an essential micronutrient for human health, and its metabolism could be affected by obesity, especially severe obesity. This study aimed to identify differential methylation genes associated with serum selenium concentration in women with and without obesity. METHODOLOGY: Thirty-four patients were enrolled in the study and divided into two groups: Obese (Ob) n = 20 and Non-Obese (NOb) n = 14, according to the Body Mass Index (BMI). Anthropometry, body composition, serum selenium, selenium intake, and biochemical parameters were evaluated. DNA extraction and bisulfite conversion were performed to hybridize the samples on the 450k Methylation Chip Infinium Beadchip (Illumina). Bioinformatics analysis was performed using the R program and the Champ package. The differentially methylated regions (DMRs) were identified using the Bumphunter method. In addition, logarithmic conversion was performed for the analysis of serum selenium and methylation. RESULTS: In the Ob group, the body weight, BMI, fat mass, and free fat mass were higher than in the NOb group, as expected. Interestingly, the serum selenium was lower in the Ob than in the NOb group without differences in selenium intake. One DMR corresponding to the CPT1B gene, involved in lipid oxidation, was related to selenium levels. This region was hypermethylated in the Ob group, indicating that the intersection between selenium deficiency and hypermethylation could influence the expression of the CPT1B gene. The transcriptional analysis confirmed the lower expression of the CPT1B gene in the Ob group. CONCLUSION: Studies connecting epigenetics to environmental factors could offer insights into the mechanisms involving the expression of genes related to obesity and its comorbidities. Here we demonstrated that the mineral selenium might play an essential role in lipid oxidation via epigenetic and transcriptional regulation of the CPT1B gene in obesity.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Epigénesis Genética , Obesidad , Selenio , Femenino , Humanos , Carnitina O-Palmitoiltransferasa/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica , Lípidos , Obesidad/genética , Obesidad/metabolismo , Selenio/metabolismo
10.
Food Res Int ; 176: 113808, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163714

RESUMEN

Hypothalamic inflammation and metabolic changes resulting from the consumption of high-fat diets have been linked to low grade inflammation and obesity. Inflammation impairs the hypothalamic expression of α7 nicotinic acetylcholine receptor (α7nAChR). The α7nAChR is described as the main component of the anti-inflammatory cholinergic pathway in different inflammation models. To assess whether the reduction in α7nAChR expression exacerbates hypothalamic inflammation induced by a high-fat diet (HFD), were used male and female global α7nAChR knockout mouse line in normal or high-fat diet for 4 weeks. Body weight gain, adiposity, glucose homeostasis, hypothalamic inflammation, food intake, and energy expenditure were evaluated. Insulin sensitivity was evaluated in neuronal cell culture. Consumption of an HFD for 4 weeks resulted in body weight gain and adiposity in male Chrna7-/- mice and the hypothalamus of male Chrna7-/- mice showed neuroinflammatory markers, with increased gene expression of pro-inflammatory cytokines and dysregulation in the nuclear factor kappa B pathway. Moreover, male Chrna7-/- mice consuming an HFD showed alterations in glucose homeostasis and serum of Chrna7-/- mice that consumed an HFD impaired insulin signalling in neuronal cell culture experiments. In general, female Chrna7-/- mice that consumed an HFD did not show the phenotypic and molecular changes found in male mice, indicating that there is sexual dimorphism in the analysed parameters. Thus, receptor deletion resulted in increased susceptibility to hypothalamic inflammation and metabolic damage associated with HFD consumption in male mice.


Asunto(s)
Dieta Alta en Grasa , Receptor Nicotínico de Acetilcolina alfa 7 , Masculino , Femenino , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , Inflamación/metabolismo , Aumento de Peso , Hipotálamo/metabolismo , Fenotipo , Glucosa/metabolismo
11.
Pharmacol Res Perspect ; 12(1): e1171, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38293783

RESUMEN

Obesity is a major risk factor for morbidity and mortality because it has a close relationship to metabolic illnesses, such as diabetes, cardiovascular diseases, and some types of cancer. With no drugs available, the mainstay of obesity management remains lifestyle changes with exercise and dietary modifications. In light of the tremendous disease burden and unmet therapeutics, fresh perspectives on pathophysiology and drug discovery are needed. The development of epigenetics provides a compelling justification for how environmental, lifestyle, and other risk factors contribute to the pathogenesis of obesity. Furthermore, epigenetic dysregulations can be restored, and it has been reported that certain natural products obtained from plants, such as tea polyphenols, ellagic acid, urolithins, curcumin, genistein, isothiocyanates, and citrus isoflavonoids, were shown to inhibit weight gain. These substances have great antioxidant potential and are of great interest because they can also modify epigenetic mechanisms. Therefore, understanding epigenetic modifications to target the primary cause of obesity and the epigenetic mechanisms of anti-obesity effects with certain phytochemicals can prove rational strategies to prevent the disease and develop novel therapeutic interventions. Thus, the current review aimed to summarize the epigenetic mechanisms and advances in therapies for obesity based on natural products to provide evidence for the development of several potential anti-obesity drug targets.


Asunto(s)
Fármacos Antiobesidad , Neoplasias , Humanos , Obesidad/tratamiento farmacológico , Obesidad/genética , Obesidad/metabolismo , Epigénesis Genética , Polifenoles/farmacología , Polifenoles/uso terapéutico , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico
12.
Nutrition ; 120: 112333, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38271759

RESUMEN

OBJECTIVE: The aim was to investigate the intergenerational inheritance induced by a high-fat diet on sensitivity to insulin and leptin in the hypothalamic control of satiety in second-generation offspring, which were fed a control diet. METHODS: Progenitor rats were fed a high-fat or a control diet for 59 d until weaning. The first-generation and second-generation offspring were fed the control diet until 90 d of age. Body mass and adiposity index of the progenitors fed the high-fat diet and the second-generation offspring from progenitors fed the high-fat diet were evaluated as were the gene expression of DNA methyltransferase 3a, angiotensin-converting enzyme type 2, angiotensin II type 2 receptor, insulin and leptin signaling pathway (insulin receptor, leptin receptor, insulin receptor substrate 2, protein kinase B, signal transducer and transcriptional activator 3, pro-opiomelanocortin, and neuropeptide Agouti-related protein), superoxide dismutase activity, and the concentration of carbonyl protein and satiety-regulating neuropeptides, pro-opiomelanocortin and neuropeptide Agouti-related protein, in the hypothalamus. RESULTS: The progenitor group fed a high-fat diet showed increased insulin resistance and reduced insulin-secreting beta-cell function and reduced food intake, without changes in caloric intake. The second-generation offspring from progenitors fed a high-fat diet, compared with second-generation offspring from progenitors fed a control diet group, had decreased insulin-secreting beta-cell function and increased food and caloric intake, insulin resistance, body mass, and adiposity index. Furthermore, second-generation offspring from progenitors fed a high-fat diet had increased DNA methyltransferase 3a, neuropeptide Agouti-related protein, angiotensin II type 1 receptor, and nicotinamide adenine dinucleotide phosphate oxidase p47phox gene expression, superoxide dismutase activity, and neuropeptide Agouti-related protein concentration in the hypothalamus. In addition, there were reduced in gene expression of the insulin receptor, leptin receptor, insulin receptor substrate 2, pro-opiomelanocortin, angiotensin II type 2 receptor, angiotensin-converting enzyme type 2, and angiotensin-(1-7) receptor and pro-opiomelanocortin concentration in the second-generation offspring from progenitors fed the high-fat diet. CONCLUSIONS: Overall, progenitors fed a high-fat diet induced changes in the hypothalamic control of satiety of the second-generation offspring from progenitors fed the high-fat diet through intergenerational inheritance. These changes led to hyperphagia, alterations in the hypothalamic pathways of insulin, and leptin and adiposity index increase, favoring the occurrence of different cardiometabolic disorders in the second-generation offspring from progenitors fed the high-fat diet fed only with the control diet.


Asunto(s)
Resistencia a la Insulina , Neuropéptidos , Ratas , Animales , Leptina/metabolismo , Insulina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Dieta Alta en Grasa/efectos adversos , Proteína Relacionada con Agouti/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Receptores de Leptina/genética , ADN Metiltransferasa 3A , Ratas Sprague-Dawley , Obesidad/genética , Obesidad/metabolismo , Hiperfagia/complicaciones , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Superóxido Dismutasa/metabolismo , Angiotensinas/metabolismo
13.
Adv Biol (Weinh) ; 8(2): e2300370, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37840428

RESUMEN

This study investigates the therapeutic potential of electroacupuncture (EA) on obesity, focusing on its influence on autophagy and energy metabolism, utilizing a high-fat diet (HFD)-induced mouse model. Treatment with EA significantly reduces body weight, fat deposition, and lipid accumulation in HFD-fed mice. Additionally, EA effectively ameliorates metabolic imbalances, reducing blood glucose levels and plasma markers of liver function. At the molecular level, EA enhances the expression of thermogenesis-associated genes in brown adipose tissue and decreases p53 expression, suggesting a decrease in apoptosis. Autophagy in white adipose tissue is inhibited by EA, as demonstrated by the suppression of key autophagy-related proteins. Further experiments highlight the critical role of Sirtuin 3 (Sirt3) in EA's anti-obesity effects. Sirt3 supplementation combined with EA results in reduced body weight, fat deposition, and lipid accumulation, along with modulations in key metabolic indicators. Moreover, EA's modulatory effect on uncoupling protein 1 (Ucp1), Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α), and p53 is found to be Sirt3 dependent. In conclusion, EA exerts beneficial effects against obesity through Sirt3-dependent modulation of autophagy and energy metabolism, indicating a potential therapeutic approach for obesity and related metabolic disorders.


Asunto(s)
Electroacupuntura , Sirtuina 3 , Ratones , Animales , Sirtuina 3/genética , Sirtuina 3/metabolismo , Sirtuina 3/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/uso terapéutico , Obesidad/terapia , Obesidad/genética , Obesidad/metabolismo , Peso Corporal , Autofagia/genética , Lípidos/uso terapéutico
14.
Food Funct ; 15(1): 208-222, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38047533

RESUMEN

Obesity, a global health concern, is linked with numerous metabolic and inflammatory disorders. Tibetan tea, a traditional Chinese beverage rich in theabrownin, is investigated in this study for its potential anti-obesity effects. Our work demonstrates that Tibetan tea consumption in C57BL/6J mice significantly mitigates obesity-related phenotypic changes without altering energy intake. Computational prediction revealed that Tibetan tea consumption reconstructs gene expression in white adipose tissue (WAT), promoting lipid catabolism and thereby increasing energy expenditure. We also note that Tibetan tea suppresses inflammation in WAT, reducing adipocyte hyperplasia and immune cell infiltration. Furthermore, Tibetan tea induces profound metabolic reprogramming, influencing amino acid metabolic pathways, specifically enhancing glutamine synthesis, which in turn suppresses pro-inflammatory chemokine production. These findings highlight Tibetan tea as a potential candidate in obesity prevention, providing a nuanced understanding of its capacity to modulate the cellular composition and metabolic landscape of WAT.


Asunto(s)
Reprogramación Metabólica , Obesidad , Ratones , Animales , Tibet , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/prevención & control , Obesidad/metabolismo , Tejido Adiposo Blanco/metabolismo , Dieta Alta en Grasa , Té/metabolismo , Tejido Adiposo/metabolismo
15.
Food Funct ; 15(1): 110-124, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38044717

RESUMEN

Increasing evidence supports the existence of fetal-originated adult diseases. Recent research indicates that the intrauterine environment affects the fetal hypothalamic energy intake center. Inulin is a probiotic that can moderate metabolic disorders, but whether maternal inulin intervention confers long-term metabolic benefits to lipid metabolism in offspring in their adult lives and the mechanism involved are unknown. Here, we used a maternal overnutrition model that was induced by excess energy intake before and during pregnancy and lactation and maternal inulin intervention was performed during pregnancy and lactation. The hypothalamic genome methylation in offspring was analyzed using a methylation array. The results showed that maternal inulin treatment modified the maternal high-fat diet (HFD)-induced increases in body weight, adipose tissue weight, and serum insulin and leptin levels and decreases in serum adiponectin levels. Maternal inulin intervention regulated the impairments in hypothalamic leptin resistance, induced the methylation of Socs3, Npy, and Il6, and inhibited the methylation of Lepr in the hypothalamus of offspring. In conclusion, maternal inulin intervention modifies offspring lipid metabolism, and the underlying mechanism involves the methylation of genes in the hypothalamus feeding circuit.


Asunto(s)
Trastornos del Metabolismo de los Lípidos , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Humanos , Leptina , Dieta Alta en Grasa/efectos adversos , Obesidad/genética , Obesidad/metabolismo , Inulina/farmacología , Inulina/metabolismo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Hipotálamo/metabolismo , Lípidos , Fenómenos Fisiologicos Nutricionales Maternos
16.
Adv Sci (Weinh) ; 11(9): e2306379, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38115764

RESUMEN

The hypothalamus in the brain plays a pivotal role in controlling energy balance in vertebrates. Nutritional excess through high-fat diet (HFD) feeding can dysregulate hypothalamic signaling at multiple levels. Yet, it remains largely unknown in what magnitude HFD feeding may impact epigenetics in this brain region. Here, it is shown that HFD feeding can significantly alter hypothalamic epigenetic events, including posttranslational histone modifications, DNA methylation, and chromatin accessibility. The authors comprehensively analyze the chromatin immunoprecipitation-sequencing (ChIP-seq), methylated DNA immunoprecipitation-sequencing (MeDIP-seq), single nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq), and RNA-seq data of the hypothalamus of C57 BL/6 mice fed with a chow or HFD for 1 to 6 months. The chromatins are categorized into 6 states using the obtained ChIP-seq data for H3K4me3, H3K27ac, H3K9me3, H3K27me3, and H3K36me3. A 1-month HFD feeding dysregulates histone modifications and DNA methylation more pronouncedly than that of 3- or 6-month. Besides, HFD feeding differentially impacts chromatin accessibility in hypothalamic cells. Thus, the epigenetic landscape is dysregulated in the hypothalamus of dietary obesity mice.


Asunto(s)
Metilación de ADN , Obesidad , Ratones , Animales , Obesidad/genética , Metilación de ADN/genética , Cromatina , Hipotálamo , Epigénesis Genética/genética
17.
J Nutr Biochem ; 123: 109512, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37907171

RESUMEN

Long-term consumption of a high-fat diet (HFD) disrupts energy homeostasis and leads to weight gain. The fat mass and obesity-associated (FTO) gene has been consistently identified to be associated with HFD-induced obesity. The hypothalamus is crucial for regulating energy balance, and HFD-induced hypothalamic leptin resistance contributes to obesity. FTO, an N6-methyladenosine (m6A) RNA methylation regulator, may be a key mediator of leptin resistance. However, the exact mechanisms remain unclear. Therefore, the present study aims to investigate the association between FTO and leptin resistance. After HFD or standard diet (SD) feeding in male mice for 22 weeks, m6A-sequencing and western blotting assays were used to identify target genes and assess protein level, and molecular interaction changes. CRISPR/Cas9 gene knockout system was employed to investigate the potential function of FTO in leptin resistance and obesity. Our data showed that chemokine (C-X3-C motif) ligand 1 (CX3CL1) was a direct downstream target of FTO-mediated m6A modification. Furthermore, upregulation of FTO/CX3CL1 and suppressor of cytokine signaling 3 (SOCS3) in the hypothalamus impaired leptin-signal transducer and activator of transcription 3 signaling, resulting in leptin resistance and obesity. Compared to wild-type (WT) mice, FTO deficiency in leptin receptor-expressing neurons of the hypothalamus significantly inhibited the upregulation of CX3CL1 and SOCS3, and partially ameliorating leptin resistance under HFD conditions. Our findings reveal that FTO involved in the hypothalamic leptin resistance and provides novel insight into the function of FTO in the contribution to hypothalamic leptin resistance and obesity.


Asunto(s)
Dieta Alta en Grasa , Leptina , Animales , Masculino , Ratones , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Quimiocina CX3CL1/metabolismo , Dieta Alta en Grasa/efectos adversos , Hipotálamo/metabolismo , Leptina/metabolismo , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética
18.
Physiol Genomics ; 56(3): 265-275, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145289

RESUMEN

Agouti-related peptide (AgRP/Agrp) within the hypothalamic arcuate nucleus (ARC) contributes to the control of energy balance, and dysregulated Agrp may contribute to metabolic adaptation during prolonged obesity. In mice, three isoforms of Agrp are encoded via distinct first exons. Agrp-A (ENSMUST00000005849.11) contributed 95% of total Agrp in mouse ARC, whereas Agrp-B (ENSMUST00000194654.2) dominated in placenta (73%). Conditional deletion of Klf4 from Agrp-expressing cells (Klf4Agrp-KO mice) reduced Agrp mRNA and increased energy expenditure but had no effects on food intake or the relative abundance of Agrp isoforms in the ARC. Chronic high-fat diet feeding masked these effects of Klf4 deletion, highlighting the context-dependent contribution of KLF4 to Agrp control. In the GT1-7 mouse hypothalamic cell culture model, which expresses all three isoforms of Agrp (including Agrp-C, ENSMUST00000194091.6), inhibition of extracellular signal-regulated kinase (ERK) simultaneously increased KLF4 binding to the Agrp promoter and stimulated Agrp expression. In addition, siRNA-mediated knockdown of Klf4 reduced expression of Agrp. We conclude that the expression of individual isoforms of Agrp in the mouse is dependent upon cell type and that KLF4 directly promotes the transcription of Agrp via a mechanism that is superseded during obesity.NEW & NOTEWORTHY In mice, three distinct isoforms of Agouti-related peptide are encoded via distinct first exons. In the arcuate nucleus of the hypothalamus, Krüppel-like factor 4 stimulates transcription of the dominant isoform in lean mice, but this mechanism is altered during diet-induced obesity.


Asunto(s)
Factor 4 Similar a Kruppel , Neuronas , Ratones , Animales , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Neuronas/metabolismo , Obesidad/genética , Obesidad/metabolismo , Hipotálamo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
19.
Nutrients ; 15(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38140369

RESUMEN

Flavonoids and phenolic acid are two of the rich polyphenols found in cinnamon (Cinnamomum zeylanicum). The effects of cinnamon extract on the inhibition of adipocyte differentiation in 3T3-L1 fibroblast cells and prohibitory lipid accumulation in male mice fed a high-fat diet were examined. Upon treating 3T3-L1 cells with cinnamon for 3 days, the cinnamon inhibited lipid accumulation and increased gene expression levels, such as those of adiponectin and leptin. In in vivo experiments, mice were randomized into four groups after a one-week acclimation period, as follows: normal diet, normal diet + 1% cinnamon extract, high-fat diet, and high-fat diet + 1% cinnamon extract. After 14 weeks of supplementation, we found that cinnamon extract increased the expression of lipolysis-related proteins, such as AMPK, p-ACC, and CPT-1, and reduced the expression of lipid-synthesis-related proteins, such as SREBP-1c and FAS, in liver tissue. Our results show that cinnamon extract may exhibit anti-obesity effects via the inhibition of lipid synthesis and adipogenesis and the induction of lipolysis in both 3T3-L1 fibroblast cells and mice fed a high-fat diet. Accordingly, cinnamon extract may have potential anti-obesity effects.


Asunto(s)
Fármacos Antiobesidad , Cinnamomum zeylanicum , Masculino , Animales , Ratones , Células 3T3-L1 , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Adipocitos , Obesidad/etiología , Obesidad/genética , Adipogénesis , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Lípidos/farmacología , Ratones Endogámicos C57BL , PPAR gamma/metabolismo
20.
Elife ; 122023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37956053

RESUMEN

Retinoic acid-induced 1 (RAI1) haploinsufficiency causes Smith-Magenis syndrome (SMS), a genetic disorder with symptoms including hyperphagia, hyperlipidemia, severe obesity, and autism phenotypes. RAI1 is a transcriptional regulator with a pan-neural expression pattern and hundreds of downstream targets. The mechanisms linking neural Rai1 to body weight regulation remain unclear. Here we find that hypothalamic brain-derived neurotrophic factor (BDNF) and its downstream signalling are disrupted in SMS (Rai1+/-) mice. Selective Rai1 loss from all BDNF-producing cells or from BDNF-producing neurons in the paraventricular nucleus of the hypothalamus (PVH) induced obesity in mice. Electrophysiological recordings revealed that Rai1 ablation decreased the intrinsic excitability of PVHBDNF neurons. Chronic treatment of SMS mice with LM22A-4 engages neurotrophin downstream signalling and delayed obesity onset. This treatment also partially rescued disrupted lipid profiles, insulin intolerance, and stereotypical repetitive behaviour in SMS mice. These data argue that RAI1 regulates body weight and metabolic function through hypothalamic BDNF-producing neurons and that targeting neurotrophin downstream signalling might improve associated SMS phenotypes.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Síndrome de Smith-Magenis , Transactivadores , Factores de Transcripción , Animales , Ratones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Homeostasis , Hipotálamo/metabolismo , Neuronas/metabolismo , Obesidad/genética , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Peso Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA